A Marginalized Combined Gamma Frailty and Normal Random-effects Model for Repeated, Overdispersed Time-to-event Outcomes
نویسندگان
چکیده
This paper proposes a marginalized model for repeated or otherwise hierarchical, overdispersed time-to-event outcomes, adapting the so-called combined model for time-to-event outcomes of Molenberghs et al (2012), who combined gamma and normal random effects. The two sets of random effects are used to accommodate simultaneously correlation between repeated measures and overdispersion. The proposed version allows for a direct marginal interpretation of all model parameters. The outcomes are allowed to be censored. Two estimation methods are proposed: full likelihood and pairwise likelihood. The proposed model is applied to data from a so-called comet assay and to data from recurrent asthma attacks in children. Both estimation methods perform very well. From simulation results, it follows that the marginalized combined model behaves similarly to the ordinary combined model in terms of point estimation and precision. It is also observed that the pairwise likelihood required more computation time on the one hand but is less sensitive to starting values and stabler in terms of bias with increasing sample size and censoring percentage than full likelihood, on the other, leaving room for both in practice. Some
منابع مشابه
Multivariate Frailty Modeling in Joint Analyzing of Recurrent Events with Terminal Event and its Application in Medical Data
Background and Objectives: In many medical situations, people can experience recurrent events with a terminal event. If the terminal event is considered a censor in this type of data, the assumption of independence in the analysis of survival data may be violated. This study was conducted to investigate joint modeling of frequent events and a final event (death) in breast cancer patients using ...
متن کاملjoineR - Joint Modelling of Repeated Measurements and Time-to-Event Data
The joineR package implements methods for analysing data from longitudinal studies in which the response from each subject consists of a time-sequence of repeated measurements and a possibly censored time-toevent outcome. The modelling framework for the repeated measurements is the linear model with random effects and/or correlated error structure. The model for the time-to-event outcome is a C...
متن کاملBeta - Binomial and Ordinal Joint Model with Random Effects for Analyzing Mixed Longitudinal Responses
The analysis of discrete mixed responses is an important statistical issue in various sciences. Ordinal and overdispersed binomial variables are discrete. Overdispersed binomial data are a sum of correlated Bernoulli experiments with equal success probabilities. In this paper, a joint model with random effects is proposed for analyzing mixed overdispersed binomial and ordinal longitudinal respo...
متن کاملA Joint Model with Marginal Interpretation for Longitudinal Continuous and Time-to-event Outcomes
This paper proposes a marginalized joint model for longitudinal continuous and repeated time-to-event outcomes, extending work of Njagi et al. (2012), as well as a marginalized joint model for bivariate repeated time-to-event outcomes.
متن کاملA Bayesian, generalized frailty model for comet assays.
This paper proposes a flexible modeling approach for so-called comet assay data regularly encountered in preclinical research. While such data consist of non-Gaussian outcomes in a multilevel hierarchical structure, traditional analyses typically completely or partly ignore this hierarchical nature by summarizing measurements within a cluster. Non-Gaussian outcomes are often modeled using expon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012